↳ Prolog
↳ PrologToPiTRSProof
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
SS_IN_GA(Xs, Ys) → U1_GA(Xs, Ys, perm_in_ga(Xs, Ys))
SS_IN_GA(Xs, Ys) → PERM_IN_GA(Xs, Ys)
PERM_IN_GA(Xs, .(X, Ys)) → U3_GA(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
PERM_IN_GA(Xs, .(X, Ys)) → APP_IN_AAG(X1s, .(X, X2s), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U6_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_GA(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GA(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U3_GA(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → APP_IN_GGA(X1s, X2s, Zs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U6_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U4_GA(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_GA(Xs, X, Ys, perm_in_ga(Zs, Ys))
U4_GA(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GA(Zs, Ys)
U1_GA(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_GA(Xs, Ys, ordered_in_g(Ys))
U1_GA(Xs, Ys, perm_out_ga(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
SS_IN_GA(Xs, Ys) → U1_GA(Xs, Ys, perm_in_ga(Xs, Ys))
SS_IN_GA(Xs, Ys) → PERM_IN_GA(Xs, Ys)
PERM_IN_GA(Xs, .(X, Ys)) → U3_GA(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
PERM_IN_GA(Xs, .(X, Ys)) → APP_IN_AAG(X1s, .(X, X2s), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U6_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_GA(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GA(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U3_GA(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → APP_IN_GGA(X1s, X2s, Zs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U6_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U4_GA(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_GA(Xs, X, Ys, perm_in_ga(Zs, Ys))
U4_GA(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GA(Zs, Ys)
U1_GA(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_GA(Xs, Ys, ordered_in_g(Ys))
U1_GA(Xs, Ys, perm_out_ga(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ PiDP
↳ PiDP
↳ PiDP
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
less_in_gg(0, s(X)) → less_out_gg
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
U9_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U9_gg(x0)
The following rules are removed from R:
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
Used ordering: POLO with Polynomial interpretation [25]:
less_in_gg(0, s(X)) → less_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(0) = 2
POL(ORDERED_IN_G(x1)) = 2 + x1
POL(U7_G(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + x3
POL(U9_gg(x1)) = x1
POL(less_in_gg(x1, x2)) = x1 + 2·x2
POL(less_out_gg) = 2
POL(s(x1)) = x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDP
↳ PiDP
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
U9_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U9_gg(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
APP_IN_GGA(.(X, Xs), Ys) → APP_IN_GGA(Xs, Ys)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U3_GA(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GA(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
PERM_IN_GA(Xs, .(X, Ys)) → U3_GA(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
U4_GA(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GA(Zs, Ys)
ss_in_ga(Xs, Ys) → U1_ga(Xs, Ys, perm_in_ga(Xs, Ys))
perm_in_ga([], []) → perm_out_ga([], [])
perm_in_ga(Xs, .(X, Ys)) → U3_ga(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_ga(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_ga(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_ga(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_ga(Xs, X, Ys, perm_in_ga(Zs, Ys))
U5_ga(Xs, X, Ys, perm_out_ga(Zs, Ys)) → perm_out_ga(Xs, .(X, Ys))
U1_ga(Xs, Ys, perm_out_ga(Xs, Ys)) → U2_ga(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X)) → less_out_gg(0, s(X))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ga(Xs, Ys, ordered_out_g(Ys)) → ss_out_ga(Xs, Ys)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U3_GA(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GA(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
PERM_IN_GA(Xs, .(X, Ys)) → U3_GA(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
U4_GA(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GA(Zs, Ys)
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
U4_GA(X, app_out_gga(Zs)) → PERM_IN_GA(Zs)
PERM_IN_GA(Xs) → U3_GA(app_in_aag(Xs))
U3_GA(app_out_aag(X1s, .(X, X2s))) → U4_GA(X, app_in_gga(X1s, X2s))
app_in_gga([], X) → app_out_gga(X)
app_in_gga(.(X, Xs), Ys) → U6_gga(X, app_in_gga(Xs, Ys))
app_in_aag(X) → app_out_aag([], X)
app_in_aag(.(X, Zs)) → U6_aag(X, app_in_aag(Zs))
U6_gga(X, app_out_gga(Zs)) → app_out_gga(.(X, Zs))
U6_aag(X, app_out_aag(Xs, Ys)) → app_out_aag(.(X, Xs), Ys)
app_in_gga(x0, x1)
app_in_aag(x0)
U6_gga(x0, x1)
U6_aag(x0, x1)
app_in_gga([], X) → app_out_gga(X)
POL(.(x1, x2)) = 2 + 2·x1 + x2
POL(PERM_IN_GA(x1)) = 2·x1
POL(U3_GA(x1)) = 2·x1
POL(U4_GA(x1, x2)) = x1 + 2·x2
POL(U6_aag(x1, x2)) = 2 + 2·x1 + x2
POL(U6_gga(x1, x2)) = 2 + 2·x1 + x2
POL([]) = 0
POL(app_in_aag(x1)) = x1
POL(app_in_gga(x1, x2)) = 2 + x1 + x2
POL(app_out_aag(x1, x2)) = x1 + x2
POL(app_out_gga(x1)) = x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
U4_GA(X, app_out_gga(Zs)) → PERM_IN_GA(Zs)
PERM_IN_GA(Xs) → U3_GA(app_in_aag(Xs))
U3_GA(app_out_aag(X1s, .(X, X2s))) → U4_GA(X, app_in_gga(X1s, X2s))
app_in_gga(.(X, Xs), Ys) → U6_gga(X, app_in_gga(Xs, Ys))
app_in_aag(X) → app_out_aag([], X)
app_in_aag(.(X, Zs)) → U6_aag(X, app_in_aag(Zs))
U6_gga(X, app_out_gga(Zs)) → app_out_gga(.(X, Zs))
U6_aag(X, app_out_aag(Xs, Ys)) → app_out_aag(.(X, Xs), Ys)
app_in_gga(x0, x1)
app_in_aag(x0)
U6_gga(x0, x1)
U6_aag(x0, x1)
PERM_IN_GA(Xs) → U3_GA(app_in_aag(Xs))
POL(.(x1, x2)) = x1 + x2
POL(PERM_IN_GA(x1)) = 2 + 2·x1
POL(U3_GA(x1)) = x1
POL(U4_GA(x1, x2)) = x1 + x2
POL(U6_aag(x1, x2)) = 2·x1 + x2
POL(U6_gga(x1, x2)) = 2·x1 + x2
POL([]) = 0
POL(app_in_aag(x1)) = 2·x1
POL(app_in_gga(x1, x2)) = 2·x1 + x2
POL(app_out_aag(x1, x2)) = 2·x1 + x2
POL(app_out_gga(x1)) = 2 + 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
U4_GA(X, app_out_gga(Zs)) → PERM_IN_GA(Zs)
U3_GA(app_out_aag(X1s, .(X, X2s))) → U4_GA(X, app_in_gga(X1s, X2s))
app_in_gga(.(X, Xs), Ys) → U6_gga(X, app_in_gga(Xs, Ys))
app_in_aag(X) → app_out_aag([], X)
app_in_aag(.(X, Zs)) → U6_aag(X, app_in_aag(Zs))
U6_gga(X, app_out_gga(Zs)) → app_out_gga(.(X, Zs))
U6_aag(X, app_out_aag(Xs, Ys)) → app_out_aag(.(X, Xs), Ys)
app_in_gga(x0, x1)
app_in_aag(x0)
U6_gga(x0, x1)
U6_aag(x0, x1)